论文标题
带有变形的Procrustes分析:特征值分解的闭合溶液
Procrustes Analysis with Deformations: A Closed-Form Solution by Eigenvalue Decomposition
论文作者
论文摘要
广义procrustes分析(GPA)是通过估计转换将多种形状带入共同参考的问题。 GPA已广泛研究了欧几里得和仿射转化。我们引入了具有可变形转换的GPA,这形成了一个更广泛而困难的问题。我们专门研究了称为线性基扭曲(LBW)的一类转换,该转换包含仿射转换和大多数常规变形模型,例如薄板样条(TPS)。具有变形的GPA是一个无凸的不受限制问题。我们使用需要两个形状协方差特征值的两个形状约束来解决可变形GPA的基本歧义。这些特征值可以独立计算为先验或后部。我们根据特征值分解给出了可变形GPA的封闭形式和最佳解决方案。该解决方案处理正则化,有利于平滑的变形场。它要求转换模型满足自由翻译的基本属性,该译本断言该模型可以实施任何翻译。我们表明,幸运的是,对于大多数常见的转换模型,包括仿射模型和TPS模型,这一属性是正确的。对于其他模型,我们为GPA提供了另一个封闭式解决方案,该解决方案与自由翻译模型的第一个解决方案完全一致。我们提供了用于计算解决方案的伪代码,导致提出的DEFPA方法,该方法快速,全球最佳且广泛适用。我们验证我们的方法并将其与以前的六个不同2D和3D数据集的工作进行比较,并特别注意从交叉验证中选择超参数。
Generalized Procrustes Analysis (GPA) is the problem of bringing multiple shapes into a common reference by estimating transformations. GPA has been extensively studied for the Euclidean and affine transformations. We introduce GPA with deformable transformations, which forms a much wider and difficult problem. We specifically study a class of transformations called the Linear Basis Warps (LBWs), which contains the affine transformation and most of the usual deformation models, such as the Thin-Plate Spline (TPS). GPA with deformations is a nonconvex underconstrained problem. We resolve the fundamental ambiguities of deformable GPA using two shape constraints requiring the eigenvalues of the shape covariance. These eigenvalues can be computed independently as a prior or posterior. We give a closed-form and optimal solution to deformable GPA based on an eigenvalue decomposition. This solution handles regularization, favoring smooth deformation fields. It requires the transformation model to satisfy a fundamental property of free-translations, which asserts that the model can implement any translation. We show that this property fortunately holds true for most common transformation models, including the affine and TPS models. For the other models, we give another closed-form solution to GPA, which agrees exactly with the first solution for models with free-translation. We give pseudo-code for computing our solution, leading to the proposed DefGPA method, which is fast, globally optimal and widely applicable. We validate our method and compare it to previous work on six diverse 2D and 3D datasets, with special care taken to choose the hyperparameters from cross-validation.