论文标题
火灾销售游戏中的平衡与融合
Equilibria and Convergence in Fire Sale Games
论文作者
论文摘要
算法交易代理商之间的复杂互动可能会对我们经济的运作产生严重影响,正如最近的银行危机和交易异常所见证的那样。在这些情况下,一个普遍的现象是消防销售,这是一种具有感染的资产销售过程,引发了进一步的销售。我们研究了火灾销售理论模型中平衡的存在和结构。我们证明,对于广泛的参数范围(例如,凸价影响功能),存在平衡并形成一个完整的晶格。这与凹入价格影响功能的不存在结果形成鲜明对比。此外,我们研究了最佳响应动力学对平衡的融合。通常,最佳响应动态可能会循环。但是,在许多情况下,从自然初始状态开始时,它们可以保证会融合到社会最佳的平衡。此外,我们讨论了一种简化的动力学变体,该变体的信息要求较少,并收敛到相同的均衡。我们根据收敛速度比较动力学。
The complex interactions between algorithmic trading agents can have a severe influence on the functioning of our economy, as witnessed by recent banking crises and trading anomalies. A common phenomenon in these situations are fire sales, a contagious process of asset sales that trigger further sales. We study the existence and structure of equilibria in a game-theoretic model of fire sales. We prove that for a wide parameter range (e.g., convex price impact functions), equilibria exist and form a complete lattice. This is contrasted with a non-existence result for concave price impact functions. Moreover, we study the convergence of best-response dynamics towards equilibria when they exist. In general, best-response dynamics may cycle. However, in many settings they are guaranteed to converge to the socially optimal equilibrium when starting from a natural initial state. Moreover, we discuss a simplified variant of the dynamics that is less informationally demanding and converges to the same equilibria. We compare the dynamics in terms of convergence speed.