论文标题

使用部分观测值对量子增强学习控制的强大优化

Robust optimization for quantum reinforcement learning control using partial observations

论文作者

Jiang, Chen, Pan, Yu, Wu, Zheng-Guang, Gao, Qing, Dong, Daoyi

论文摘要

当前的量子增强学习控制模型通常假定量子状态已知是控制优化的先验。但是,由于量子数量所需的量子测量数量的指数缩放,对量子状态的全面观察在实验上是不可行的。在本文中,我们使用部分观察结果来研究一种强大的增强学习方法,以克服这一困难。该控制方案与近期量子设备兼容,其中噪声很普遍,并且预定量子状态的动力学实际上是不可能的。我们表明,与依靠完整观察的常规方法相比,这种简化的控制方案可以实现相似甚至更好的性能。我们证明了该方案在量子状态控制和量子近似优化算法的示例中的有效性。已经表明,即使噪声幅度与控制幅度相同,也可以实现高保真状态控制。此外,可以使用嘈杂的控制哈密顿量为QAOA实现可接受的优化精度。可以训练这种强大的控制优化模型,以补偿实用量子计算中的不确定性。

The current quantum reinforcement learning control models often assume that the quantum states are known a priori for control optimization. However, full observation of quantum state is experimentally infeasible due to the exponential scaling of the number of required quantum measurements on the number of qubits. In this paper, we investigate a robust reinforcement learning method using partial observations to overcome this difficulty. This control scheme is compatible with near-term quantum devices, where the noise is prevalent and predetermining the dynamics of quantum state is practically impossible. We show that this simplified control scheme can achieve similar or even better performance when compared to the conventional methods relying on full observation. We demonstrate the effectiveness of this scheme on examples of quantum state control and quantum approximate optimization algorithm. It has been shown that high-fidelity state control can be achieved even if the noise amplitude is at the same level as the control amplitude. Besides, an acceptable level of optimization accuracy can be achieved for QAOA with noisy control Hamiltonian. This robust control optimization model can be trained to compensate the uncertainties in practical quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源