论文标题

建筑物事项:基于机器学习的空间变异性基于冬季的热舒适性预测

Building Matters: Spatial Variability in Machine Learning Based Thermal Comfort Prediction in Winters

论文作者

Lala, Betty, Kala, Srikant Manas, Rastogi, Anmol, Dahiya, Kunal, Yamaguchi, Hirozumi, Hagishima, Aya

论文摘要

室内环境中的热舒适感会对居民的健康,福祉和表现产生巨大影响。鉴于对能源效率和实现智能建筑的关注,机器学习(ML)越来越多地用于数据驱动的热舒适度(TC)预测。通常,提出了用于空调或HVAC通风建筑物的基于ML的解决方案,这些模型主要是为成年人设计的。另一方面,在大多数国家 /地区,自然通风(NV)的建筑物是常态。它们也是节能和长期可持续性目标的理想选择。但是,NV建筑物的室内环境缺乏热调节,并且在空间环境中差异很大。这些因素使TC预测极具挑战性。因此,确定建筑环境对TC模型性能的影响很重要。此外,需要研究跨不同NV室内空间的TC预测模型的概括能力。这项工作解决了这些问题。数据通过在5个自然通风的学校建筑中进行的为期一个月的实地实验收集,涉及512名小学生。空间变异性对学生舒适性的影响通过预测准确性的变化(高达71%)来证明。还通过特征重要性的变化来证明建筑环境对TC预测的影响。此外,对儿童(我们的数据集)和成人(ASHRAE-II数据库)进行了模型性能的空间变异性比较分析。最后,评估了NV教室中热舒适模型的概括能力,并强调了主要的挑战。

Thermal comfort in indoor environments has an enormous impact on the health, well-being, and performance of occupants. Given the focus on energy efficiency and Internet-of-Things enabled smart buildings, machine learning (ML) is being increasingly used for data-driven thermal comfort (TC) prediction. Generally, ML-based solutions are proposed for air-conditioned or HVAC ventilated buildings and the models are primarily designed for adults. On the other hand, naturally ventilated (NV) buildings are the norm in most countries. They are also ideal for energy conservation and long-term sustainability goals. However, the indoor environment of NV buildings lacks thermal regulation and varies significantly across spatial contexts. These factors make TC prediction extremely challenging. Thus, determining the impact of the building environment on the performance of TC models is important. Further, the generalization capability of TC prediction models across different NV indoor spaces needs to be studied. This work addresses these problems. Data is gathered through month-long field experiments conducted in 5 naturally ventilated school buildings, involving 512 primary school students. The impact of spatial variability on student comfort is demonstrated through variation in prediction accuracy (by as much as 71%). The influence of building environment on TC prediction is also demonstrated through variation in feature importance. Further, a comparative analysis of spatial variability in model performance is done for children (our dataset) and adults (ASHRAE-II database). Finally, the generalization capability of thermal comfort models in NV classrooms is assessed and major challenges are highlighted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源