论文标题
晶格量规理论有限托里的平面图
Planar diagrams for lattice gauge theory on finite tori
论文作者
论文摘要
在有限的lattice tori of $ v $ sites的Quenched $ u(n)$模型中,$ n = \ infty $等效性通过将循环的lattice momenta与't Hooft双线的群组索引一起放置在平面扰动理论中的所有订单证明。已知的$ n^2 $图表数量,$ n \ gg v $的估计值以及同时存在UV和IR截止值,这表明在限制$ n = \ n = \ infty $之前,平面扰动扩张的正收敛半径为正。
An $N=\infty$ equivalence among quenched $U(N)$ models on finite lattice tori of $V$ sites is proven to all orders in planar perturbation theory by putting circulant lattice momenta together with group indices on 't Hooft's double lines. Known estimates for the number of order $N^2$ diagrams, $N\gg V$, and the simultaneous presence of UV and IR cutoffs, suggest a positive radius of convergence for the planar perturbative expansion before the limit $N=\infty$ is taken.