论文标题

迈向体现AI的因果关系理论

Towards a Grounded Theory of Causation for Embodied AI

论文作者

Cohen, Taco

论文摘要

有良好的因果建模框架,但是这些框架需要许多人类领域的专业知识来定义因果变量并执行干预措施。为了使自主代理通过互动经验学习抽象的因果模型,需要扩展和澄清现有的理论基础。现有的框架没有关于可变选择 /表示形式的指导,更重要的是,没有迹象表明国家空间的行为政策或物理转变不得将其视为干预措施。本文中概述的框架将动作描述为状态空间的转换,例如由运行策略的代理引起的。这使得以统一的方式描述了微型状态空间的两个变换及其抽象模型,并说后者何时是垂直 /接地 /自然的。然后,我们介绍(因果)变量,将机制定义为不变的预测指标,并说何时可以将动作视为``手术干预'',从而将因果关系的目的\&干预技能学习的目标成为更清晰的焦点。

There exist well-developed frameworks for causal modelling, but these require rather a lot of human domain expertise to define causal variables and perform interventions. In order to enable autonomous agents to learn abstract causal models through interactive experience, the existing theoretical foundations need to be extended and clarified. Existing frameworks give no guidance regarding variable choice / representation, and more importantly, give no indication as to which behaviour policies or physical transformations of state space shall count as interventions. The framework sketched in this paper describes actions as transformations of state space, for instance induced by an agent running a policy. This makes it possible to describe in a uniform way both transformations of the micro-state space and abstract models thereof, and say when the latter is veridical / grounded / natural. We then introduce (causal) variables, define a mechanism as an invariant predictor, and say when an action can be viewed as a ``surgical intervention'', thus bringing the objective of causal representation \& intervention skill learning into clearer focus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源