论文标题

RAW-GNN:基于随机步行聚合的图形神经网络

RAW-GNN: RAndom Walk Aggregation based Graph Neural Network

论文作者

Jin, Di, Wang, Rui, Ge, Meng, He, Dongxiao, Li, Xiang, Lin, Wei, Zhang, Weixiong

论文摘要

基于图形卷积的方法已成功应用于同质图上的表示学习,其中具有相同标签或相似属性的节点倾向于相互连接。由于这些方法使用的图形卷积网络(GCN)的同义假设,它们不适合异质图,其中具有不同标记或不同属性的节点往往相邻。几种方法试图解决这个异质问题,但是它们不会改变GCN的基本聚合机制,因为它们依靠求和操作员来汇总来自相邻节点的信息,这隐含地遵守同质假设。在这里,我们介绍了一种新型的聚合机制,并开发了一个基于步行的图形神经网络(称为RAW-GNN)方法。提出的方法将随机步行策略与图神经网络相结合。新方法利用广度优先的随机步行搜索来捕获同质信息和深度优先搜索以收集异性信息。它用基于路径的社区代替了传统社区,并基于复发性神经网络引入了新的基于路径的聚合器。这些设计使RAW-GNN适用于同质图和异质图。广泛的实验结果表明,新方法在各种同质图和异质图上实现了最先进的性能。

Graph-Convolution-based methods have been successfully applied to representation learning on homophily graphs where nodes with the same label or similar attributes tend to connect with one another. Due to the homophily assumption of Graph Convolutional Networks (GCNs) that these methods use, they are not suitable for heterophily graphs where nodes with different labels or dissimilar attributes tend to be adjacent. Several methods have attempted to address this heterophily problem, but they do not change the fundamental aggregation mechanism of GCNs because they rely on summation operators to aggregate information from neighboring nodes, which is implicitly subject to the homophily assumption. Here, we introduce a novel aggregation mechanism and develop a RAndom Walk Aggregation-based Graph Neural Network (called RAW-GNN) method. The proposed approach integrates the random walk strategy with graph neural networks. The new method utilizes breadth-first random walk search to capture homophily information and depth-first search to collect heterophily information. It replaces the conventional neighborhoods with path-based neighborhoods and introduces a new path-based aggregator based on Recurrent Neural Networks. These designs make RAW-GNN suitable for both homophily and heterophily graphs. Extensive experimental results showed that the new method achieved state-of-the-art performance on a variety of homophily and heterophily graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源