论文标题
用于智能停车的空间定位令牌(SPToken)
Spatial Positioning Token (SPToken) for Smart Parking
论文作者
论文摘要
在本文中,我们描述了一种指导寻找停车位(PS)的驾驶员的方法。提出的系统提出了一系列路线,驱动程序应横穿,以最大程度地提高找到PS的可能性并最大程度地减少行驶距离。该系统建立在我们最近的Architecture Sptoken上,该体系结合了分布式分类帐技术(DLT)和增强学习(RL),以实现估算未知分布的系统而不会扰乱环境。为此,我们使用从车辆到车辆传递的许多虚拟令牌来启用大规模并行的RL系统,该系统使用参与者车辆的众包信息估算给定来源预性对(OD)对的最佳途径。此外,包括带有奖励记忆机制的移动窗口,以更好地应对非平稳环境。给出仿真结果以说明我们系统的功效。
In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent architecture SPToken, which combines both Distributed Ledger Technology (DLT) and Reinforcement Learning (RL) to realise a system for the estimation of an unknown distribution without disturbing the environment. For this, we use a number of virtual tokens that are passed from vehicle to vehicle to enable a massively parallelised RL system that estimates the best route for a given origin-destination (OD) pair, using crowdsourced information from participant vehicles. Additionally, a moving window with reward memory mechanism is included to better cope with non-stationary environments. Simulation results are given to illustrate the efficacy of our system.