论文标题

关于内源性变化健身景观的合作多机构搜索

Cooperative Multi-Agent Search on Endogenously-Changing Fitness Landscapes

论文作者

Lim, Chin Woei, Allmendinger, Richard, Knowles, Joshua, Alhosani, Ayesha, Bleda, Mercedes

论文摘要

我们使用一个多代理系统来建模代理(代表公司)如何合作并适应业务“景观”,其中一些更具影响力的公司有能力塑造其他公司的景观。我们研究的景观是基于众所周知的Kauffman模型,并增加了“塑造者”,这些公司可以为自己和所有其他玩家改变景观的特征。我们的工作调查了还可以使用认知和体验式搜索的公司以及与其他公司合作的能力,如何使用这些能力来更快,更熟练地适应。我们发现,在一个合作集团中,公司必须仍然有自己的想法,并抵制更强大的合作伙伴的直接模仿,以共同达到更好的高度。具有更大影响力成员的较大群体和群体通常会做得更好,因此有针对性的智能合作是有益的。这些结论是暂定的,我们的结果表明了对景观坚固性和“延长性”的敏感性(即,塑造公司将改变景观的能力)。总体而言,我们的工作展示了计算机科学,进化和机器学习在这些复杂环境中为业务策略做出贡献的潜力。

We use a multi-agent system to model how agents (representing firms) may collaborate and adapt in a business 'landscape' where some, more influential, firms are given the power to shape the landscape of other firms. The landscapes we study are based on the well-known NK model of Kauffman, with the addition of 'shapers', firms that can change the landscape's features for themselves and all other players. Our work investigates how firms that are additionally endowed with cognitive and experiential search, and the ability to form collaborations with other firms, can use these capabilities to adapt more quickly and adeptly. We find that, in a collaborative group, firms must still have a mind of their own and resist direct mimicry of stronger partners to attain better heights collectively. Larger groups and groups with more influential members generally do better, so targeted intelligent cooperation is beneficial. These conclusions are tentative, and our results show a sensitivity to landscape ruggedness and "malleability" (i.e. the capacity of the landscape to be changed by the shaper firms). Overall, our work demonstrates the potential of computer science, evolution, and machine learning to contribute to business strategy in these complex environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源