论文标题

从稀疏数据中识别具有高信心的非线性动力学

Identifying Nonlinear Dynamics with High Confidence from Sparse Data

论文作者

Batko, Bogdan, Gameiro, Marcio, Hung, Ying, Kalies, William, Mischaikow, Konstantin, Vieira, Ewerton

论文摘要

我们介绍了一个新的程序,鉴于从固定的确定性非线性动力学系统产生的稀疏数据可以表征特定的本地和/或全局动态行为,并具有严格的概率保证。更确切地说,稀疏数据用于基于高斯过程(GP)构建统计替代模型。使用组合方法对替代模型的动力学进行询问,并使用代数拓扑不变式(Conley Index)进行表征。 GP预测分布提供了这些拓扑不变性及其特征动力学的信心,适用于未知的动力学系统(GP的样本路径)。本文的重点是解释思想,因此我们将示例限制在一维系统上,并展示如何捕获固定点,周期性轨道,连接轨道,轴承性和混乱动力学的存在。

We introduce a novel procedure that, given sparse data generated from a stationary deterministic nonlinear dynamical system, can characterize specific local and/or global dynamic behavior with rigorous probability guarantees. More precisely, the sparse data is used to construct a statistical surrogate model based on a Gaussian process (GP). The dynamics of the surrogate model is interrogated using combinatorial methods and characterized using algebraic topological invariants (Conley index). The GP predictive distribution provides a lower bound on the confidence that these topological invariants, and hence the characterized dynamics, apply to the unknown dynamical system (a sample path of the GP). The focus of this paper is on explaining the ideas, thus we restrict our examples to one-dimensional systems and show how to capture the existence of fixed points, periodic orbits, connecting orbits, bistability, and chaotic dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源