论文标题

基于SCC分解的BüchiAutomata的划分和拼接确定

Divide-and-Conquer Determinization of Büchi Automata based on SCC Decomposition

论文作者

Li, Yong, Turrini, Andrea, Feng, Weizhi, Vardi, Moshe Y., Zhang, Lijun

论文摘要

非确定性Büchi自动机(NBA)的确定是自动机理论的基本结构,并应用于概率验证和反应性合成。标准的确定结构,例如基于Safra-Piterman的方法的标准确定结构,都在整个NBA上工作。在这项工作中,我们提出了一种分裂和纠缠的确定方法。为此,我们首先将给定NBA的紧密连接组件(SCC)分类为固有的弱,确定性的接受和非确定性的接受。然后,我们介绍如何独立于其他类型的SCC来确定每种类型的SCC;这导致更轻松地处理确定算法,该算法利用了SCC的结构。一旦确定了所有SCC,我们就会展示如何构成它们,以获取最终的同等确定性艾默生 - lee automaton,可以将其转换为确定性的Rabin Automaton,而无需对状态和过渡的爆炸。我们在我们的工具可乐中实施算法,并通过最先进的工具点和猫头鹰在文献中的大量基准上对可乐进行了评估。实验结果表明,我们的原型可乐优于状态和过渡的数量。

The determinization of a nondeterministic Büchi automaton (NBA) is a fundamental construction of automata theory, with applications to probabilistic verification and reactive synthesis. The standard determinization constructions, such as the ones based on the Safra-Piterman's approach, work on the whole NBA. In this work we propose a divide-and-conquer determinization approach. To this end, we first classify the strongly connected components (SCCs) of the given NBA as inherently weak, deterministic accepting, and nondeterministic accepting. We then present how to determinize each type of SCC independently from the others; this results in an easier handling of the determinization algorithm that takes advantage of the structure of that SCC. Once all SCCs have been determinized, we show how to compose them so to obtain the final equivalent deterministic Emerson-Lei automaton, which can be converted into a deterministic Rabin automaton without blow-up of states and transitions. We implement our algorithm in a our tool COLA and empirically evaluate COLA with the state-of-the-art tools Spot and OWL on a large set of benchmarks from the literature. The experimental results show that our prototype COLA outperforms Spot and OWL regarding the number of states and transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源