论文标题

从人类示范中学习语义意识的运动技能

Learning Semantics-Aware Locomotion Skills from Human Demonstration

论文作者

Yang, Yuxiang, Meng, Xiangyun, Yu, Wenhao, Zhang, Tingnan, Tan, Jie, Boots, Byron

论文摘要

环境的语义(例如地形类型和属性)揭示了腿部机器人调整其行为的重要信息。在这项工作中,我们提出了一个框架,该框架从四足动物的感知中学习语义感知的运动技能,以便使用感知信息的机器人可以以适当的速度和步态穿越复杂的越野地形。由于缺乏高保真性户外模拟,我们的框架需要直接在现实世界中进行培训,这为数据效率和安全带来了独特的挑战。为了确保样本效率,我们使用越野驾驶数据集预先培训感知模型。为了避免现实世界政策探索的风险,我们利用人类示范来训练一种从相机图像中选择所需的远期速度的速度政策。为了获得最大的遍历性,我们将速度策略与步态选择器配对,该步态选择器为每个前进速度选择了强大的运动步态。我们的框架仅使用40分钟的人类演示数据,可以根据感知到的地形语义来调整机器人的速度和步态,并使机器人能够以近距离的速度行驶超过6公里。

The semantics of the environment, such as the terrain type and property, reveals important information for legged robots to adjust their behaviors. In this work, we present a framework that learns semantics-aware locomotion skills from perception for quadrupedal robots, such that the robot can traverse through complex offroad terrains with appropriate speeds and gaits using perception information. Due to the lack of high-fidelity outdoor simulation, our framework needs to be trained directly in the real world, which brings unique challenges in data efficiency and safety. To ensure sample efficiency, we pre-train the perception model with an off-road driving dataset. To avoid the risks of real-world policy exploration, we leverage human demonstration to train a speed policy that selects a desired forward speed from camera image. For maximum traversability, we pair the speed policy with a gait selector, which selects a robust locomotion gait for each forward speed. Using only 40 minutes of human demonstration data, our framework learns to adjust the speed and gait of the robot based on perceived terrain semantics, and enables the robot to walk over 6km without failure at close-to-optimal speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源