论文标题
BeamsNet:一种数据驱动的方法增强自动水下车辆导航多普勒速度对数测量
BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log Measurements for Autonomous Underwater Vehicle Navigation
论文作者
论文摘要
自动水下车辆(AUV)执行各种应用,例如海底映射和水下结构健康监测。通常,由多普勒速度日志(DVL)提供的惯性导航系统用于提供车辆的导航解决方案。在这种融合中,DVL提供了AUV的速度向量,从而确定导航解决方案的准确性并有助于估计导航状态。本文提出了BeamsNet,这是一个端到端的深度学习框架,用于回归估计的DVL速度向量,以提高速度向量估算的准确性,并可以取代基于模型的方法。提出了两个版本的BeamsNet,其对网络的输入有所不同。第一个使用当前的DVL光束测量和惯性传感器数据,而另一个仅利用DVL数据,对回归过程进行了当前和过去的DVL测量值。进行了模拟和海上实验,以验证相对于基于模型的方法的拟议学习方法。使用地中海的Snapir AUV进行了海洋实验,收集了大约四个小时的DVL和惯性传感器数据。我们的结果表明,拟议的方法在估计DVL速度向量方面取得了超过60%的改善。
Autonomous underwater vehicles (AUV) perform various applications such as seafloor mapping and underwater structure health monitoring. Commonly, an inertial navigation system aided by a Doppler velocity log (DVL) is used to provide the vehicle's navigation solution. In such fusion, the DVL provides the velocity vector of the AUV, which determines the navigation solution's accuracy and helps estimate the navigation states. This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector that improves the accuracy of the velocity vector estimate, and could replace the model-based approach. Two versions of BeamsNet, differing in their input to the network, are suggested. The first uses the current DVL beam measurements and inertial sensors data, while the other utilizes only DVL data, taking the current and past DVL measurements for the regression process. Both simulation and sea experiments were made to validate the proposed learning approach relative to the model-based approach. Sea experiments were made with the Snapir AUV in the Mediterranean Sea, collecting approximately four hours of DVL and inertial sensor data. Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector.