论文标题
具有相称近似值的一维准静态晶格模型的重新归一化组理论
Renormalization-Group Theory of 1D quasiperiodic lattice models with commensurate approximants
论文作者
论文摘要
我们开发了一个重新归一化组(RG)的描述,描述了Onediarsional(1D)准静态晶格模型的定位属性。通过增加随后的相称近似值的晶胞来诱导RG流。准碘系统的阶段的特征是与重新归一化的单带模型相关的RG固定点。我们确定了包括许多先前报道的准确溶解的准碘模型的固定点。通过对相关且无关紧要的扰动进行分类,我们表明,可以在近似单位单元的大小中以及在某些情况下分析地确定更通用模型的相位边界。我们的发现提供了统一的了解一1D准碘系统的类别。
We develop a renormalization group (RG) description of the localization properties of onedimensional (1D) quasiperiodic lattice models. The RG flow is induced by increasing the unit cell of subsequent commensurate approximants. Phases of quasiperiodic systems are characterized by RG fixed points associated with renormalized single-band models. We identify fixed-points that include many previously reported exactly solvable quasiperiodic models. By classifying relevant and irrelevant perturbations, we show that phase boundaries of more generic models can be determined with exponential accuracy in the approximant's unit cell size, and in some cases analytically. Our findings provide a unified understanding of widely different classes of 1D quasiperiodic systems.