论文标题
来自初始数据的偏心率估算数值相对论模拟
Eccentricity estimation from initial data for Numerical Relativity Simulations
论文作者
论文摘要
我们描述并研究了偏心率的瞬时定义,该定义将在二元黑洞的完整数值模拟的最初时刻应用。该方法包括在二进制最大分离时评估偏心率。我们估计它最多使用北纽顿后(3PN)订单,并将这些结果与不断发展的(保守)3PN运动方程的结果进行比较,并从径向转弯点计算偏心$ e_r $,从而找到了极好的一致性。接下来,我们将术语列入最高3.5pn的术语,然后将此方法与偏心率的相应估计值进行比较,$ e_r^{nr} $在旋转二进制黑色孔的完整数值演变过程中,以分数因子为特征,由分数因子$ 0 \ leq f \ leq f \ leq f \ leq f \ leq f \ leq f \ leq f \ leq f \ leq f \ leq f \ leq1 $的初始切线动量。发现我们最初的瞬时定义是一种非常有用的工具,可以预测和表征高度偏心的完整数值模拟。
We describe and study an instantaneous definition of eccentricity to be applied at the initial moment of full numerical simulations of binary black holes. The method consists of evaluating the eccentricity at the moment of maximum separation of the binary. We estimate it using up to third post-Newtonian (3PN) order, and compare these results with those of evolving (conservative) 3PN equations of motion for a full orbit and compute the eccentricity $e_r$ from the radial turning points, finding excellent agreement. We next include terms with spins up to 3.5PN, and then compare this method with the corresponding estimates of the eccentricity $e_r^{NR}$ during full numerical evolutions of spinning binary black holes, characterized invariantly by a fractional factor $0\leq f\leq1$ of the initial tangential momenta. It is found that our initial instantaneous definition is a very useful tool to predict and characterize even highly eccentric full numerical simulations.