论文标题

张量基于新型的非凸函数最小值对数凹点惩罚函数

Tensor Recovery Based on A Novel Non-convex Function Minimax Logarithmic Concave Penalty Function

论文作者

Zhang, Hongbing, Liu, Xinyi, Liu, Chang, Fan, Hongtao, Li, Yajing, Zhu, Xinyun

论文摘要

非凸松弛方法已被广泛用于张量恢复问题,并且与凸松弛方法相比,可以实现更好的恢复结果。在本文中,提出了一种新的非凸功能,最小值对数凹点(MLCP)函数,并分析了其某些固有特性,其中有趣的是发现对数函数是MLCP函数的上限。提出的功能将概括为张量的情况,从而产生张量MLCP和加权张量$Lγ$ -Norm。考虑到将其直接应用于张量恢复问题时无法获得其明确解决方案。因此,给出了解决此类问题的相应等价定理,即张量当量的MLCP定理和等效加权张量$Lγ$ -Norm定理。此外,我们提出了两个基于EMLCP的经典张量恢复问题的模型,即低秩量张量完成(LRTC)和张量强大的主组件分析(TRPCA),以及设计近端替代线性化最小化(棕榈)算法以单独解决它们。此外,基于Kurdyka-梦jasiwicz的性质,证明所提出算法的溶液序列具有有限的长度并在全球范围内收敛到临界点。最后,广泛的实验表明,提出的算法取得了良好的结果,并且可以证实,在最小化问题中,MLCP函数确实比对数函数更好,这与理论特性的分析一致。

Non-convex relaxation methods have been widely used in tensor recovery problems, and compared with convex relaxation methods, can achieve better recovery results. In this paper, a new non-convex function, Minimax Logarithmic Concave Penalty (MLCP) function, is proposed, and some of its intrinsic properties are analyzed, among which it is interesting to find that the Logarithmic function is an upper bound of the MLCP function. The proposed function is generalized to tensor cases, yielding tensor MLCP and weighted tensor $Lγ$-norm. Consider that its explicit solution cannot be obtained when applying it directly to the tensor recovery problem. Therefore, the corresponding equivalence theorems to solve such problem are given, namely, tensor equivalent MLCP theorem and equivalent weighted tensor $Lγ$-norm theorem. In addition, we propose two EMLCP-based models for classic tensor recovery problems, namely low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA), and design proximal alternate linearization minimization (PALM) algorithms to solve them individually. Furthermore, based on the Kurdyka-Łojasiwicz property, it is proved that the solution sequence of the proposed algorithm has finite length and converges to the critical point globally. Finally, Extensive experiments show that proposed algorithm achieve good results, and it is confirmed that the MLCP function is indeed better than the Logarithmic function in the minimization problem, which is consistent with the analysis of theoretical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源