论文标题
手性对称:分析$ su(3)$统一矩阵
Chiral symmetry: An analytic $SU(3) $ unitary matrix
论文作者
论文摘要
$ su(2)$统一矩阵$ u $ u $ u $在HADRONION低能过程中既具有指数和分析表示),与$ u = \ exp \ weft [i \mathbfτ\ cdot \ hat {\mathbfπ} fip {\mathbfπ}θ\ right] \sinθ$。一个人通过得出分析表达式将此结果扩展到$ su(3)$统一矩阵,该表达式对于Gell-Mann矩阵$ \Mathbfλ$,读取$ u = \ exp \ weft [i \ mathbf {i \ mathbf {v} \ cdot \ cdot \ cdot \cdbfλ\ \ right] \ left(h \ hat {\ MathBf {v}} + \ tfrac {1} {\ sqrt {\ sqrt {3}} g \ hat {\ MathBf {\ MathBf {b}}} \ right) \右)i + \ left(x \ hat {\ mathbf {v}} + \ tfrac {1} {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ hat {\ hat {\ mathbf {b}}} \ right) v_8 \,] $,$ b_i = d_ {ijk} \,v_j \,v_k $和因子$ f,\ cdots z $根据$ v = | \ mathbf {v} | \ hat {v} _j \,\ hat {v} _k /3 $。此结果不取决于变量$ \ Mathbf {V} $附加的特定含义,并且分析表达式用于明确计算关联的左和右表单。当$ \ mathbf {v} $代表伪内科的梅森字段时,经典极限对应于$ \ langle 0 |η| 0 \ rangle \ rangle \ rynarrow \ rightarrowη\ rightarrow 0 $,并产生环状结构$ + \ tfrac {1} {\ sqrt {3}} \ left(-1 + \ cos v \ right) \ right \} $,在由$ i $,$ i $,$ \ hat {\ mathbf {b}} \ cdot \ cdot \ cdot \mathbfλ$和$ hat {\ mathbf {\ mathbf {v} {v cdot {v cdot \ cdot \ cdot {也明确评估了分析矩阵的轴向变换。
The $SU(2)$ unitary matrix $U$ employed in hadronic low-energy processes has both exponential and analytic representations, related by $ U = \exp\left[ i \mathbfτ \cdot \hat{\mathbfπ} θ\,\right] = \cosθI + i \mathbfτ \cdot \hat{\mathbfπ} \sinθ$. One extends this result to the $SU(3)$ unitary matrix by deriving an analytic expression which, for Gell-Mann matrices $\mathbfλ$, reads $ U= \exp\left[ i \mathbf{v} \cdot \mathbfλ \right] = \left[ \left( F + \tfrac{2}{3} G \right) I + \left( H \hat{\mathbf{v}} + \tfrac{1}{\sqrt{3}} G \hat{\mathbf{b}} \right) \cdot \mathbfλ \, \right] + i \left[ \left( Y + \tfrac{2}{3} Z \right) I + \left( X \hat{\mathbf{v}} + \tfrac{1}{\sqrt{3}} Z \hat{\mathbf{b}} \right) \cdot \mathbfλ \right] $, with $v_i=[\,v_1, \cdots v_8\,]$, $ b_i = d_{ijk} \, v_j \, v_k $, and factors $F, \cdots Z$ written in terms of elementary functions depending on $v=|\mathbf{v}|$ and $η= 2\, d_{ijk} \, \hat{v}_i \, \hat{v}_j \, \hat{v}_k /3 $. This result does not depend on the particular meaning attached to the variable $\mathbf{v}$ and the analytic expression is used to calculate explicitly the associated left and right forms. When $\mathbf{v}$ represents pseudoscalar meson fields, the classical limit corresponds to $\langle 0|η|0\rangle \rightarrow η\rightarrow 0$ and yields the cyclic structure $ U = \left\{ \left[ \tfrac{1}{3} \left( 1 + 2 \cos v \right) I + \tfrac{1}{\sqrt{3}} \left( -1 + \cos v \right) \hat{\mathbf{b}}\cdot \mathbfλ \right] + i \left( \sin v \right) \hat{\mathbf{v}}\cdot \mathbfλ \right\} $, which gives rise to a tilted circumference with radius $\sqrt{2/3}$ in the space defined by $I$, $\hat{\mathbf{b}}\cdot \mathbfλ $, and $\hat{\mathbf{v}}\cdot \mathbfλ $. The axial transformations of the analytic matrix are also evaluated explicitly.