论文标题
零在Cauchy-de Branges空间中的定位
Localization of zeros in Cauchy-de Branges spaces
论文作者
论文摘要
我们研究了复杂平原中的离散度量类别,具有以下属性:最多有限的数字,该度量的任何cauchy变换的所有零(带有$ \ ell^2 $ -DATA)均位于该度量的支持附近。我们发现该属性的几种等效形式,并证明了吸引Cauchy变换零的部分的部分是通过包含模量有限套件订购的。
We study the class of discrete measures in the complex plain with the following property: up to a finite number, all zeros of any Cauchy transform of the measure (with $\ell^2$-data) are localized near the support of the measure. We find several equivalent forms of this property and prove that the parts of the support attracting zeros of Cauchy transforms are ordered by inclusion modulo finite sets.