论文标题

Quiver BPS代数的量规/

Gauge/Bethe correspondence from quiver BPS algebras

论文作者

Galakhov, Dmitry, Li, Wei, Yamazaki, Masahito

论文摘要

我们研究了二维$ \ Mathcal {n} =(2,2)$ Supersymmetricric Quiver仪表理论的量规/Bethe对应关系,该理论与Calabi-yau相关的三倍,其BPS代数最近已被确定为Quiver Yangians。我们从放置在旋转链的每个位置的箭袋的晶体表示开始。然后,我们通过将单位晶体结合到晶体链中来构建可集成的模型,该代数的相互作用是通过表示理论和规格理论参数的组合来确定的。对于非手续颤动,我们发现晶体链的Bethe Ansatz方程与箭筒理论的真空方程相吻合,从而证实了相应的规格/伯特对应关系。但是,对于更一般的手性颤抖,我们发现满足杨巴克斯特方程和单位性条件的$ r $ $ amatrices的障碍物,从而对其相应的规格/伯特通信。我们还讨论了箭量BPS代数的三角(量子环形)版本,该版本对应于三维$ \ MATHCAL {n} = 2 $量学理论并得出相似的结论。我们的发现表明,在文献中经常忽略了仪表/伯特信函中的重要细微之处。

We study the Gauge/Bethe correspondence for two-dimensional $\mathcal{N}=(2,2)$ supersymmetric quiver gauge theories associated with toric Calabi-Yau three-folds, whose BPS algebras have recently been identified as the quiver Yangians. We start with the crystal representations of the quiver Yangian, which are placed at each site of the spin chain. We then construct integrable models by combining the single-site crystals into crystal chains by a coproduct of the algebra, which we determine by a combination of representation-theoretical and gauge-theoretical arguments. For non-chiral quivers, we find that the Bethe ansatz equations for the crystal chain coincide with the vacuum equation of the quiver gauge theory, thus confirming the corresponding Gauge/Bethe correspondence. For more general chiral quivers, however, we find obstructions to the $R$-matrices satisfying the Yang-Baxter equations and the unitarity conditions, and hence to their corresponding Gauge/Bethe correspondence. We also discuss trigonometric (quantum toroidal) versions of the quiver BPS algebras, which correspond to three-dimensional $\mathcal{N}=2$ gauge theories and arrive at similar conclusions. Our findings demonstrate that there are important subtleties in the Gauge/Bethe correspondence, often overlooked in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源