论文标题
使用几何学习自动鉴定放疗的分割错误
Automatic identification of segmentation errors for radiotherapy using geometric learning
论文作者
论文摘要
使用卷积神经网络(CNN)自动分割CT扫描中的器官 - 桨(OARS)。但是,这些细分仍需要在临床使用前进行临床医生的手动编辑和批准,这可能很耗时。这项工作的目的是开发一种工具,以自动识别3D OAR细分中的错误而没有地面真理。我们的工具使用了结合CNN和图神经网络(GNN)的新型体系结构来利用分割的外观和形状。使用合成生成的腮腺分割数据集并使用逼真的轮廓错误的数据集对所提出的模型进行训练。通过消融测试评估了我们的模型的有效性,评估了体系结构不同部分的功效,以及从无监督的借口任务中使用转移学习。我们最佳性能模型预测了腮腺上的错误,内部和外部错误的精度分别为85.0%和89.7%,召回66.5%和68.6%。该离线质量检查工具可以在临床途径中使用,有可能减少临床医生通过检测需要注意的区域来纠正轮廓的时间。我们所有的代码均在https://github.com/rrr-uom-projects/contour_auto_qatool上公开获得。
Automatic segmentation of organs-at-risk (OARs) in CT scans using convolutional neural networks (CNNs) is being introduced into the radiotherapy workflow. However, these segmentations still require manual editing and approval by clinicians prior to clinical use, which can be time consuming. The aim of this work was to develop a tool to automatically identify errors in 3D OAR segmentations without a ground truth. Our tool uses a novel architecture combining a CNN and graph neural network (GNN) to leverage the segmentation's appearance and shape. The proposed model is trained using self-supervised learning using a synthetically-generated dataset of segmentations of the parotid and with realistic contouring errors. The effectiveness of our model is assessed with ablation tests, evaluating the efficacy of different portions of the architecture as well as the use of transfer learning from an unsupervised pretext task. Our best performing model predicted errors on the parotid gland with a precision of 85.0% & 89.7% for internal and external errors respectively, and recall of 66.5% & 68.6%. This offline QA tool could be used in the clinical pathway, potentially decreasing the time clinicians spend correcting contours by detecting regions which require their attention. All our code is publicly available at https://github.com/rrr-uom-projects/contour_auto_QATool.