论文标题
急性缺血性中风后功能结果预测的深度转化模型
Deep transformation models for functional outcome prediction after acute ischemic stroke
论文作者
论文摘要
在许多医学应用中,寻求具有高预测性能的可解释模型。通常,这些模型需要处理半结构化数据,例如表格和图像数据。我们展示了如何将深层转换模型(DTM)应用于满足这些要求的分配回归。 DTM允许数据分析师为不同的输入方式指定(深)神经网络,使其适用于各种研究问题。像统计模型一样,DTM可以提供可解释的效果估计,同时实现深神经网络的最新预测性能。此外,保留模型结构和解释性的DTM的集合的构建允许量化认识和态度不确定性。在这项研究中,我们比较了几个DTM,包括基线调整的模型,该模型对407名中风患者的半结构数据集进行了培训,目的是预测中风后三个月后的顺序功能结果。我们遵循模型构建的统计原则,以在评估所涉及数据方式的相对重要性的同时,在可解释性和灵活性之间实现足够的权衡。我们评估了临床实践中使用的序数和二分法版本的模型。我们表明,表格临床和脑成像数据都对功能结果预测有用,而基于表格数据的模型仅优于基于成像数据的模型。在结合两种数据模式时,没有大量证据可以改善预测。总体而言,我们强调说,DTM提供了一种强大的,可解释的方法来分析半结构化数据,并且它们有可能支持临床决策。
In many medical applications, interpretable models with high prediction performance are sought. Often, those models are required to handle semi-structured data like tabular and image data. We show how to apply deep transformation models (DTMs) for distributional regression which fulfill these requirements. DTMs allow the data analyst to specify (deep) neural networks for different input modalities making them applicable to various research questions. Like statistical models, DTMs can provide interpretable effect estimates while achieving the state-of-the-art prediction performance of deep neural networks. In addition, the construction of ensembles of DTMs that retain model structure and interpretability allows quantifying epistemic and aleatoric uncertainty. In this study, we compare several DTMs, including baseline-adjusted models, trained on a semi-structured data set of 407 stroke patients with the aim to predict ordinal functional outcome three months after stroke. We follow statistical principles of model-building to achieve an adequate trade-off between interpretability and flexibility while assessing the relative importance of the involved data modalities. We evaluate the models for an ordinal and dichotomized version of the outcome as used in clinical practice. We show that both, tabular clinical and brain imaging data, are useful for functional outcome prediction, while models based on tabular data only outperform those based on imaging data only. There is no substantial evidence for improved prediction when combining both data modalities. Overall, we highlight that DTMs provide a powerful, interpretable approach to analyzing semi-structured data and that they have the potential to support clinical decision making.