论文标题

在谐波功能上的切割,流量和梯度条件

Cuts, flows and gradient conditions on harmonic functions

论文作者

Gournay, Antoine

论文摘要

降低的同种学促使人们查看满足某些梯度条件的谐波功能。如果$ g $是两个无限组的直接产品或一个(fc-central)划分的群体,则在其cayley图中没有梯度的谐波功能。从中,Metabelian $ g $在$ \ ell^p $中没有谐波功能。此外,在径向等级条件下,等级轮廓的组受对数功率的界限也没有谐波功能,梯度在$ \ ell^p $中。

Reduced cohomology motivates to look at harmonic functions which satisfy certain gradient conditions. If $G$ is a direct product of two infinite groups or a (FC-central)-by-cyclic group, then there are no harmonic functions with gradient in $c_0$ on its Cayley graphs. From this, it follows that a metabelian group $G$ has no harmonic functions with gradient in $\ell^p$. Furthermore, under a radial isoperimetric condition, groups whose isoperimetric profile is bounded by power of logarithms also have no harmonic functions with gradient in $\ell^p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源