论文标题

通过目标感知迅速蒸馏的几杆立场检测

Few-Shot Stance Detection via Target-Aware Prompt Distillation

论文作者

Jiang, Yan, Gao, Jinhua, Shen, Huawei, Cheng, Xueqi

论文摘要

立场检测旨在确定文本的作者是否赞成,反对或中立。这项任务的主要挑战是两个方面的挑战:源于不同的目标以及缺乏目标的上下文信息而产生的很少的学习。现有作品主要通过设计基于注意力的模型或引入嘈杂的外部知识来解决第二个问题,而第一个问题仍未探索。在本文中,我们的灵感来自于培训的语言模型(PLM)的潜在能力,该模型(PLM)是知识库和少数学习者的启发,我们建议介绍基于立场检测的及时基于基于基于立场的微调。 PLM可以为目标提供基本的上下文信息,并通过提示启用几次学习。考虑到目标在立场检测任务中的关键作用,我们设计了目标感知的提示,并提出了一种新颖的语言器。我们的语言器不会将每个标签映射到具体单词,而是将每个标签映射到矢量,并选择最能捕获姿势与目标之间相关性的标签。此外,为了减轻通过单人工提示来处理不同目标的可能缺陷,我们建议将信息从多个提示中学到的信息提炼。实验结果表明,在全数据和少数场景中,我们提出的模型的表现出色。

Stance detection aims to identify whether the author of a text is in favor of, against, or neutral to a given target. The main challenge of this task comes two-fold: few-shot learning resulting from the varying targets and the lack of contextual information of the targets. Existing works mainly focus on solving the second issue by designing attention-based models or introducing noisy external knowledge, while the first issue remains under-explored. In this paper, inspired by the potential capability of pre-trained language models (PLMs) serving as knowledge bases and few-shot learners, we propose to introduce prompt-based fine-tuning for stance detection. PLMs can provide essential contextual information for the targets and enable few-shot learning via prompts. Considering the crucial role of the target in stance detection task, we design target-aware prompts and propose a novel verbalizer. Instead of mapping each label to a concrete word, our verbalizer maps each label to a vector and picks the label that best captures the correlation between the stance and the target. Moreover, to alleviate the possible defect of dealing with varying targets with a single hand-crafted prompt, we propose to distill the information learned from multiple prompts. Experimental results show the superior performance of our proposed model in both full-data and few-shot scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源