论文标题

库拉莫托振荡器中的矩阵耦合和普遍的挫败感

Matrix coupling and generalized frustration in Kuramoto oscillators

论文作者

Buzanello, Guilhermo L., Barioni, Ana Elisa D., de Aguiar, Marcus A. M.

论文摘要

Kuramoto模型描述了具有不同固有频率的耦合振荡器的同步。在原始模型的众多概括中,Kuramoto和Sakaguchi(KS)提出了一个{\ IT沮丧}版本,即使振荡器的平均固有频率为零,也会导致订单参数的动态行为。在这里,我们考虑了对沮丧的KS模型的概括,该模型表现出新的同步过渡。该模型的形式与原始的库拉莫托模型相同,但用单位向量编写。用耦合矩阵替换耦合常数会破坏旋转对称性,并在特征值是真实的时迫使阶参数指向具有最高特征值的特征值的方向。对于复杂的特征值,订单参数模块在围绕单元圆而旋转时会振荡,从而创建活跃状态。我们使用Ott-Antonsen Ansatz得出了频率分布的完整相图。我们还表明,更改固有频率的平均值会导致进一步的相变,即顺序参数的模块从振荡到静态。

The Kuramoto model describes the synchronization of coupled oscillators that have different natural frequencies. Among the many generalizations of the original model, Kuramoto and Sakaguchi (KS) proposed a {\it frustrated} version that resulted in dynamic behavior of the order parameter, even when the average natural frequency of the oscillators is zero. Here we consider a generalization of the frustrated KS model that exhibits new transitions to synchronization. The model is identical in form to the original Kuramoto model, but written in terms of unit vectors. Replacing the coupling constant by a coupling matrix breaks the rotational symmetry and forces the order parameter to point in the direction of the eigenvector with highest eigenvalue, when the eigenvalues are real. For complex eigenvalues the module of order parameter oscillates while it rotates around the unit circle, creating active states. We derive the complete phase diagram for Lorentzian distribution of frequencies using the Ott-Antonsen ansatz. We also show that changing the average value of the natural frequencies leads to further phase transitions where the module of the order parameter goes from oscillatory to static.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源