论文标题

视频活动本地化,不确定性在时间边界

Video Activity Localisation with Uncertainties in Temporal Boundary

论文作者

Huang, Jiabo, Jin, Hailin, Gong, Shaogang, Liu, Yang

论文摘要

随着时间的推移,视频活动定位的当前方法隐含地假设标记为模型训练的活动时间边界是确定且精确的。但是,在无脚本的自然视频中,不同的活动主要是顺利进行的,因此确定活动何时随着时间的推移开始和结束时,确定在本质上模棱两可。当前,在模型培训中,这种时间标记中的这种不确定性目前被忽略,从而导致学习错误匹配的视频文本相关性,而测试中的概括较差。在这项工作中,我们通过引入弹性力矩边界(EMB)来解决这个问题,以适应灵活和适应性活动的时间边界,以建模普遍可解释的视频文本相关性与对预固定注释中的时间不确定性的宽容相关性。具体而言,我们通过挖掘和发现框架的时间端点可以适应地构建弹性边界,从而可以最大程度地构建视频片段和查询句子之间的对齐方式。为了启用更准确的匹配(段内容注意)和更健壮的定位(段弹性边界),我们通过新颖的有指导性注意机制优化了框架端点的选择。在三个视频活动定位基准上进行的广泛实验表明,在没有建模不确定性的情况下,EMB比现有方法的优势令人信服。

Current methods for video activity localisation over time assume implicitly that activity temporal boundaries labelled for model training are determined and precise. However, in unscripted natural videos, different activities mostly transit smoothly, so that it is intrinsically ambiguous to determine in labelling precisely when an activity starts and ends over time. Such uncertainties in temporal labelling are currently ignored in model training, resulting in learning mis-matched video-text correlation with poor generalisation in test. In this work, we solve this problem by introducing Elastic Moment Bounding (EMB) to accommodate flexible and adaptive activity temporal boundaries towards modelling universally interpretable video-text correlation with tolerance to underlying temporal uncertainties in pre-fixed annotations. Specifically, we construct elastic boundaries adaptively by mining and discovering frame-wise temporal endpoints that can maximise the alignment between video segments and query sentences. To enable both more accurate matching (segment content attention) and more robust localisation (segment elastic boundaries), we optimise the selection of frame-wise endpoints subject to segment-wise contents by a novel Guided Attention mechanism. Extensive experiments on three video activity localisation benchmarks demonstrate compellingly the EMB's advantages over existing methods without modelling uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源