论文标题

无关机器上间隔计划的硬度

Hardness of Interval Scheduling on Unrelated Machines

论文作者

Hermelin, Danny, Itzhaki, Yuval, Molter, Hendrik, Shabtay, Dvir

论文摘要

我们为无关机器上的间隔调度提供了新的(参数化)计算硬度结果。这是一个经典的调度问题,是从即时或精益制造业中引发的,其目标是在其截止日期之前完成工作。我们得到了$ n $ obs和$ m $的机器。每个作业都有一个截止日期,一个重量和处理时间,每台机器上可能会有所不同。目标是找到一个时间表,以最大限度地提高了在其截止日期完成的工作总重量。请注意,这是唯一的定义每个机器上每个作业的处理时间间隔。 无关机器上的间隔调度与着色间隔图密切相关,并且已经对数十年进行了彻底研究。但是,正如Mnich和Van Bevern [Computers \&Operations Research,2018]所指出的那样,作为参数的数字$ m $的参数化复杂性仍然是打开的。我们通过证明无关机器上的间隔调度为W [1] - 由数字$ M $计算机来解决。为此,我们证明了与特殊情况的$ m $有关的w [1] - 我们拥有带有合格的机器设置的平行机器。这回答了MNICH和VAN BEVERN的15个开放问题的列表中的开放问题8 [计算机\&Operations Research,2018]。 此外,我们通过证明它是NP完整的,解决了无关机器上未加权版本的间隔计划的计算复杂性状态。这回答了Sung and Vlach的一个公开问题[日程安排杂志,2005年]。

We provide new (parameterized) computational hardness results for Interval Scheduling on Unrelated Machines. It is a classical scheduling problem motivated from just-in-time or lean manufacturing, where the goal is to complete jobs exactly at their deadline. We are given $n$ jobs and $m$ machines. Each job has a deadline, a weight, and a processing time that may be different on each machine. The goal is find a schedule that maximized the total weight of jobs completed exactly at their deadline. Note that this uniquely defines a processing time interval for each job on each machine. Interval Scheduling on Unrelated Machines is closely related to coloring interval graphs and has been thoroughly studied for several decades. However, as pointed out by Mnich and van Bevern [Computers \& Operations Research, 2018], the parameterized complexity for the number $m$ of machines as a parameter remained open. We resolve this by showing that Interval Scheduling on Unrelated Machines is W[1]-hard when parameterized by the number $m$ of machines. To this end, we prove W[1]-hardness with respect to $m$ of the special case where we have parallel machines with eligible machine sets for jobs. This answers Open Problem 8 of Mnich and van Bevern's list of 15 open problems in the parameterized complexity of scheduling [Computers \& Operations Research, 2018]. Furthermore, we resolve the computational complexity status of the unweighted version of Interval Scheduling on Unrelated Machines by proving that it is NP-complete. This answers an open question by Sung and Vlach [Journal of Scheduling, 2005].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源