论文标题
功能时间序列的拟合优点测试,应用到Ornstein-Uhlenbeck过程
A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
论文作者
论文摘要
随着时间的流逝,可以将高频财务数据作为一系列曲线收集;例如,作为日内价格,目前是财务最大兴趣的主题之一。功能数据分析框架提供了一种合适的工具,可以提取每日路径形状中包含的信息,通常无法从经典统计方法中获得。在本文中,提出了一种具有未知和一般顺序的自回归希尔伯特式(ARH)模型的新型拟合优度测试。该测试仅对自相关运算符的功能形式施加了希尔伯特 - 史密斯的假设,并且测试统计量是根据Cramér-von Mises Norm提出的。野生引导重新采样程序用于校准,以便通过仿真研究检查有关功率和大小的有限样本行为。此外,我们还为扩散模型(例如Ornstein-Uhlenbeck流程)提供了新的规范测试,并以日期内货币汇率的应用说明了。特别是,分为两阶段的方法:首先,我们检查功能样本及其过去值是否通过ARH(1)模型相关;其次,在线性下,我们执行功能性f检验。
High-frequency financial data can be collected as a sequence of curves over time; for example, as intra-day price, currently one of the topics of greatest interest in finance. The Functional Data Analysis framework provides a suitable tool to extract the information contained in the shape of the daily paths, often unavailable from classical statistical methods. In this paper, a novel goodness-of-fit test for autoregressive Hilbertian (ARH) models, with unknown and general order, is proposed. The test imposes just the Hilbert-Schmidt assumption on the functional form of the autocorrelation operator, and the test statistic is formulated in terms of a Cramér-von Mises norm. A wild bootstrap resampling procedure is used for calibration, such that the finite sample behavior of the test, regarding power and size, is checked via a simulation study. Furthermore, we also provide a new specification test for diffusion models, such as Ornstein-Uhlenbeck processes, illustrated with an application to intra-day currency exchange rates. In particular, a two-stage methodology is proffered: firstly, we check if functional samples and their past values are related via ARH(1) model; secondly, under linearity, we perform a functional F-test.