论文标题

在双色复合物设置中的离散维纳代数,对称性的频谱分解和超级刺激

Discrete Wiener Algebra in the Bicomplex Setting, Spectral Factorization with Symmetry, and Superoscillations

论文作者

Alpay, Daniel, Lewkowicz, Izchak, Vajiac, Mihaela

论文摘要

在本文中,我们介绍了在双色复合体设置中构建维纳代数的平行理论。借助适当的对称条件,双色矩阵值的情况可以看作是一个复杂的有价值情况,在此矩阵有价值的情况下,我们在经典的双学术分析与对称性的复杂分析之间建立了必要的联系。在这种情况下,我们还为超激动撰写了一个应用程序。

In this paper we present parallel theories on constructing Wiener algebras in the bicomplex setting. With the appropriate symmetry condition, the bicomplex matrix valued case can be seen as a complex valued case and, in this matrix valued case, we make the necessary connection between classical bicomplex analysis and complex analysis with symmetry. We also write an application to superoscillations in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源