论文标题
由于沉淀物引起的对相接口运动的抗性性:相位田间研究
Athermal resistance to phase interface motion due to precipitates: A phase field study
论文作者
论文摘要
研究了由于沉淀物引起的相位界面运动的抗抗抗性。对于相变(PT),求解了相位场和弹性方程。使用误差和矩形函数包括由于沉淀物引起的体积失差应变。由于存在沉淀,临界热驱动力在直接和反向PT之间明显不同,从而导致磁滞行为。对于与界面宽度相比,沉淀半径较小,失配应变实际上对关键的热驱动力没有任何影响。同样,临界热驱动力值非线性增加了直接和反向PT的沉淀浓度。沉淀表面能的变化显着改变了PT形态和关键的热驱动力。与界面宽度相比,临界热驱动力显示出对大沉淀大小的不合适应变的依赖性。对于恒定表面能(CSE)和可变的表面能(VSE)边界条件(BCS),在沉淀表面,临界热驱动力与直接PT的不合适应变系数相比,在反向PT的情况下几乎独立于直接PT。对于较大的沉淀物,临界热驱动力非线性增加与直接PT的沉淀浓度相比。对于反向PT,其CSE BCS的值线性增加与沉淀浓度相比,而它与VSE BC的沉淀浓度无关。同样,对于任何浓度,VSE BCS都会导致较高的热临界驱动力,较小的磁滞范围和较大的转化速率。使用固定接口的热力学相平衡条件验证了临界微观结构和热驱动力。
Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces.