论文标题

部分可观测时空混沌系统的无模型预测

Variable-Depth Simulation of Most Permissive Boolean Networks

论文作者

Roncalli, Théo, Paulevé, Loïc

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In systems biology, Boolean networks (BNs) aim at modeling the qualitative dynamics of quantitative biological systems. Contrary to their (a)synchronous interpretations, the Most Permissive (MP) interpretation guarantees capturing all the trajectories of any quantitative system compatible with the BN, without additional parameters. Notably, the MP mode has the ability to capture transitions related to the heterogeneity of time scales and concentration scales in the abstracted quantitative system and which are not captured by asynchronous modes. So far, the analysis of MPBNs has focused on Boolean dynamical properties, such as the existence of particular trajectories or attractors. This paper addresses the sampling of trajectories from MPBNs in order to quantify the propensities of attractors reachable from a given initial BN configuration. The computation of MP transitions from a configuration is performed by iteratively discovering possible state changes. The number of iterations is referred to as the permissive depth, where the first depth corresponds to the asynchronous transitions. This permissive depth reflects the potential concentration and time scales heterogeneity along the abstracted quantitative process. The simulation of MPBNs is illustrated on several models from the literature, on which the depth parametrization can help to assess the robustness of predictions on attractor propensities changes triggered by model perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源