论文标题

某些多面体产物的共同体的模型

Models for the Cohomology of Certain Polyhedral Products

论文作者

Bendersky, Martin, Grbić, Jelena

论文摘要

对于带有单位的交换环$ \ Mathbf k $,我们描述和研究各种差异分级$ \ mathbf k $ - 模块和$ \ Mathbf K $ -Algebras,它们是多面体产品共同体$(\ useverline {cx} {cx} {cx},\ usevenlline x)^k $的模型。在此过程中,我们证明了真实的Moment-angle-never-necemology $ h^*((d^1,s^0)^k; \ mathbb z)$ the Moment-Moment-angle-necle-nemle angle-neve confffect是一个模块,它不是来自几何设置的模块。我们还揭示了$ h^*((d^1,s^0)^k; \ mathbb z)$和$ h^**((d^n,s^n,s^{n-1})^k; \ mathbb z)$ for $ n \ geq 2 $具有相同的来源。 作为应用程序,这项工作为研究$(\ usepline {cx},\下划线x)^k $的基于循环空间的阶段奠定了阶段$ \ MATHCAL C^*((\下划线{Cx},\下划线X)^K; \ Mathbb Z)$。

For a commutative ring $\mathbf k$ with unit, we describe and study various differential graded $\mathbf k$-modules and $ \mathbf k$-algebras which are models for the cohomology of polyhedral products $(\underline{CX},\underline X)^K$. Along the way, we prove that the integral cohomology $H^*((D^1, S^0)^K; \mathbb Z)$ of the real moment-angle complex is a Tor module, the one that does not come from a geometric setting. We also reveal that the apriori different cup product structures in $H^*((D^1, S^0)^K;\mathbb Z)$ and in $H^*((D^n, S^{n-1})^K; \mathbb Z)$ for $n\geq 2$ have the same origin. As an application, this work sets the stage for studying the based loop space of $(\underline{CX}, \underline X)^K$ in terms of the bar construction applied to the differential graded $\mathbb Z$-algebras $B(\mathcal C^*(\underline X; \mathbb Z), K) $ quasi-isomorphic to the singular cochain algebra $\mathcal C^*((\underline{CX},\underline X)^K;\mathbb Z)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源