论文标题

ZSON:使用多模式目标嵌入的零射击对象目标导航

ZSON: Zero-Shot Object-Goal Navigation using Multimodal Goal Embeddings

论文作者

Majumdar, Arjun, Aggarwal, Gunjan, Devnani, Bhavika, Hoffman, Judy, Batra, Dhruv

论文摘要

我们提出了一种可扩展的方法,用于学习开放世界对象目标导航(ObjectNav) - 要求虚拟机器人(代理)在未探索的环境中找到对象的任何实例(例如,“查找接收器”)。我们的方法完全是零射击 - 即,它不需要任何形式的objectnav奖励或演示。取而代之的是,我们训练图像目标导航(Imagenav)任务,在该任务中,代理在其中找到捕获图片(即目标图像)的位置。具体而言,我们将目标图像编码为多模式的语义嵌入空间,以使训练在未注释的3D环境(例如HM3D)中以训练语义 - 目标导航(Semanticnav)代理。训练后,可以指示Semanticnav代理找到以自由形式的自然语言描述的对象(例如“接收器”,“浴室水槽”等),通过将语言目标投射到相同的多模式,语义嵌入空间中。结果,我们的方法启用了开放世界的ObjectNav。我们在三个ObjectNAV数据集(Gibson,HM3D和MP3D)上广泛评估了我们的代理商,并观察到成功的4.2%-20.0%的绝对改善。作为参考,这些收益与2020年至2021年Objectnav挑战赛挑战者之间成功的5%改善相似或更好。在开放世界的环境中,我们发现我们的代理商可以概括地通过明确提到的房间(例如,“找到厨房的水槽”)进行复合说明,并且何时可以推断目标室(例如,“找到水槽和炉子”)。

We present a scalable approach for learning open-world object-goal navigation (ObjectNav) -- the task of asking a virtual robot (agent) to find any instance of an object in an unexplored environment (e.g., "find a sink"). Our approach is entirely zero-shot -- i.e., it does not require ObjectNav rewards or demonstrations of any kind. Instead, we train on the image-goal navigation (ImageNav) task, in which agents find the location where a picture (i.e., goal image) was captured. Specifically, we encode goal images into a multimodal, semantic embedding space to enable training semantic-goal navigation (SemanticNav) agents at scale in unannotated 3D environments (e.g., HM3D). After training, SemanticNav agents can be instructed to find objects described in free-form natural language (e.g., "sink", "bathroom sink", etc.) by projecting language goals into the same multimodal, semantic embedding space. As a result, our approach enables open-world ObjectNav. We extensively evaluate our agents on three ObjectNav datasets (Gibson, HM3D, and MP3D) and observe absolute improvements in success of 4.2% - 20.0% over existing zero-shot methods. For reference, these gains are similar or better than the 5% improvement in success between the Habitat 2020 and 2021 ObjectNav challenge winners. In an open-world setting, we discover that our agents can generalize to compound instructions with a room explicitly mentioned (e.g., "Find a kitchen sink") and when the target room can be inferred (e.g., "Find a sink and a stove").

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源