论文标题
明确针对哈密顿系统的能源支持方法
Explicit Exactly Energy-conserving Methods for Hamiltonian Systems
论文作者
论文摘要
对于哈密顿系统,完全保存数值或伪能源的仿真算法已经进行了广泛的研究。大多数可用的方法要么在每个时间步骤中都需要对非线性代数方程的迭代解决方案,要么是显式的,但是确切的保护属性取决于连续时间的积分的精确评估。在进一步的限制下,即对哈密顿量的势能贡献是基于不变的能量四倍化的非负性,更新的技术,可以实现精确的数值能量保护,并且在每个时间步中只需要线性系统的解决方案。在本文中,可以证明,对于一般的哈密顿系统,在势能的非阴性条件下,可以采用完全明确的方法,以完全保存数值。此外,此类方法是无条件稳定的,并且与最简单的集成方法(例如Stormer-Verlet)具有可比的计算成本。还提出了导致有条件稳定方法的这种方案的一种变体,并遵循势能的分裂。在Fermi,Pasta和Ulam的经典测试问题以及部分微分方程的非线性系统(包括描述弦和板的高振幅振动的非线性系统)的情况下,介绍了各种数值结果。
For Hamiltonian systems, simulation algorithms that exactly conserve numerical energy or pseudo-energy have seen extensive investigation. Most available methods either require the iterative solution of nonlinear algebraic equations at each time step, or are explicit, but where the exact conservation property depends on the exact evaluation of an integral in continuous time. Under further restrictions, namely that the potential energy contribution to the Hamiltonian is non-negative, newer techniques based on invariant energy quadratisation allow for exact numerical energy conservation and yield linearly implicit updates, requiring only the solution of a linear system at each time step. In this article, it is shown that, for a general class of Hamiltonian systems, and under the non-negativity condition on potential energy, it is possible to arrive at a fully explicit method that exactly conserves numerical energy. Furthermore, such methods are unconditionally stable, and are of comparable computational cost to the very simplest integration methods (such as Stormer-Verlet). A variant of this scheme leading to a conditionally-stable method is also presented, and follows from a splitting of the potential energy. Various numerical results are presented, in the case of the classic test problem of Fermi, Pasta and Ulam, as well as for nonlinear systems of partial differential equations, including those describing high amplitude vibration of strings and plates.