论文标题

在$ \ mathbb {z}^n $上的1个独立渗透的改进范围

Improved bounds for 1-independent percolation on $\mathbb{Z}^n$

论文作者

Balister, Paul, Johnston, Tom, Savery, Michael, Scott, Alex

论文摘要

图$ g $上的1独立债券渗透模型是$ g $的跨度子图上的概率分布,其中所有顶点 - 偶口套件套件$ s_1 $和$ s_2 $,$ s_1 $ s_1 $的边缘状态与S_2 $ $ s_2 $中的Edges的状态无关。如果随机子图具有具有正概率的无限分量,则这种模型被认为会渗透。在2012年,第一作者和Bollobás定义了$ p _ {\ max}(g)$,是那些$ p $的至高无上的$ p $,其中存在一个独立的债券渗透模型上的$ g $,其中每个边缘都会在随机子库中存在至少$ p $,但没有渗透性。 当$ g $是晶格图$ \ mathbb {z}^2 $时,该领域的基本且具有挑战性的问题是确定$ p _ {\ max}(g)$的值。因为$ p _ {\ max}(\ mathbb {z}^n)\ leq p _ {\ max}(\ mathbb {z}^{n-1})$,也很感兴趣的是,建立$ \ \ \ lim_ {n \ to \ to \ to \ to \ fim iffty} p _ max} $ a {在本文中,我们在此极限上显着改善了最著名的上限,并在$ p _ {\ max}(\ mathbb {z}^2)$上获得更好的上和下限。在证明这些结果时,我们还对超立方体图上的1独立模型的关键概率给出了上限,几乎可以肯定地毫无疑问地包含一个巨大的成分。

A 1-independent bond percolation model on a graph $G$ is a probability distribution on the spanning subgraphs of $G$ in which, for all vertex-disjoint sets of edges $S_1$ and $S_2$, the states of the edges in $S_1$ are independent of the states of the edges in $S_2$. Such a model is said to percolate if the random subgraph has an infinite component with positive probability. In 2012 the first author and Bollobás defined $p_{\max}(G)$ to be the supremum of those $p$ for which there exists a 1-independent bond percolation model on $G$ in which each edge is present in the random subgraph with probability at least $p$ but which does not percolate. A fundamental and challenging problem in this area is to determine the value of $p_{\max}(G)$ when $G$ is the lattice graph $\mathbb{Z}^2$. Since $p_{\max}(\mathbb{Z}^n)\leq p_{\max}(\mathbb{Z}^{n-1})$, it is also of interest to establish the value of $\lim_{n\to\infty} p_{\max}(\mathbb{Z}^n)$. In this paper we significantly improve the best known upper bound on this limit and obtain better upper and lower bounds on $p_{\max}(\mathbb{Z}^2)$. In proving these results, we also give an upper bound on the critical probability for a 1-independent model on the hypercube graph to contain a giant component asymptotically almost surely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源