论文标题
功能表示学习,用于从光学相干断层扫描图像中鲁棒性视网膜疾病检测
Feature Representation Learning for Robust Retinal Disease Detection from Optical Coherence Tomography Images
论文作者
论文摘要
眼科图像可能包含相同的外观病理,这些病理可能会导致自动化技术的失败以区分不同的视网膜退行性疾病。此外,依赖大型注释数据集和缺乏知识蒸馏可以限制基于ML的临床支持系统在现实环境中的部署。为了提高知识的鲁棒性和可传递性,需要增强的特征学习模块才能从视网膜子空间中提取有意义的空间表示。这样的模块(如果有效地使用)可以检测到独特的疾病特征并区分这种视网膜退行性病理的严重程度。在这项工作中,我们提出了一个具有三个学习头的稳健疾病检测结构,i)是视网膜疾病分类的监督编码器,ii)一种无监督的解码器,用于重建疾病特异性空间信息,iii)新的表示模块,用于学习编码器解码器特征和增强模型的精确度之间的相似性。我们对两个可公开可用的OCT数据集的实验结果表明,所提出的模型在准确性,可解释性和鲁棒性方面优于现有的最新模型,用于分布视网膜疾病检测。
Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems' deployment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract meaningful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.