论文标题
微观生物学的数学建模:离子配对,介电降低和出生的能量
Mathematical Modeling of Microscale Biology: Ion Pairing, Dielectric Decrement, and Born Energy in Glycosaminoglycan Brushes
论文作者
论文摘要
包括核酸,蛋白质和糖胺聚糖在内的生物大分子通常是阴离子的,并且可以跨越多达数百纳米甚至微米长度尺度的结构域。这些结构存在于拥挤的环境中,这些环境由弱的多价静电相互作用主导,这些静电相互作用可以使用代表基本分子纳米级生物物理学的平均场连续方法进行建模。我们使用稳态修改的泊松托型玻璃曼型模型和瞬态Poisson-nernst-Nernst-Planck模型开发了这种模型,用于糖胺聚糖刷子,这些模型融合了重要的离子特异性(HofMeister)效果。结果量化了如何通过离子电泳,介电降水合力和离子特异性配对实现电负性。静电电势以及绑定和未结合离子的刷 - 盐界面剖面的特征是在整个界面上施加的跳跃条件。这些模型应适用于许多本质上的生物物理环境,并预计将提供有关治疗剂和药物交付车辆的设计和开发的见解,以改善人类健康。
Biological macromolecules including nucleic acids, proteins, and glycosaminoglycans are typically anionic and can span domains of up to hundreds of nanometers and even micron length scales. The structures exist in crowded environments that are dominated by weak multivalent electrostatic interactions that can be modeled using mean field continuum approaches that represent underlying molecular nanoscale biophysics. We develop such models for glycosaminoglycan brushes using both steady state modified Poisson-Boltzmann models and transient Poisson-Nernst-Planck models that incorporate important ion-specific (Hofmeister) effects. The results quantify how electroneutrality is attained through ion electrophoresis, dielectric decrement hydration forces, and ion-specific pairing. Brush-Salt interfacial profiles of the electrostatic potential as well as bound and unbound ions are characterized for imposed jump conditions across the interface. The models should be applicable to many intrinsically-disordered biophysical environments and are anticipated to provide insight into the design and development of therapeutics and drug-delivery vehicles to improve human health.