论文标题
预测连续葡萄糖监测器的大量营养素成分
Predicting the meal macronutrient composition from continuous glucose monitors
论文作者
论文摘要
2型糖尿病(T2DM)中持续的高水平血糖可能会带来灾难性的长期健康后果。 T2DM临床干预措施的重要组成部分是监测饮食摄入,以使血浆葡萄糖水平保持在可接受的范围内。然而,当前监测食物摄入的技术是时间密集的,容易出错。为了解决这个问题,我们正在开发使用连续葡萄糖监测器(CGM)自动监测食物摄入量和这些食物组成的技术。本文介绍了一项临床研究的结果,其中参与者佩戴CGM时,参与者用已知的大量营养素量(碳水化合物,蛋白质和脂肪)食用9份标准餐。我们构建了一个多任务神经网络,以估算CGM信号的大量营养素组成,并将其与基线线性回归进行了比较。最好的预测结果来自我们提出的神经网络,该神经网络受试者依赖性数据训练,如根平方的相对误差和相关系数所衡量。这些发现表明,可以通过CGM信号估算大量营养素组成,从而开发了开发自动技术以跟踪食物摄入量的可能性。
Sustained high levels of blood glucose in type 2 diabetes (T2DM) can have disastrous long-term health consequences. An essential component of clinical interventions for T2DM is monitoring dietary intake to keep plasma glucose levels within an acceptable range. Yet, current techniques to monitor food intake are time intensive and error prone. To address this issue, we are developing techniques to automatically monitor food intake and the composition of those foods using continuous glucose monitors (CGMs). This article presents the results of a clinical study in which participants consumed nine standardized meals with known macronutrients amounts (carbohydrate, protein, and fat) while wearing a CGM. We built a multitask neural network to estimate the macronutrient composition from the CGM signal, and compared it against a baseline linear regression. The best prediction result comes from our proposed neural network, trained with subject-dependent data, as measured by root mean squared relative error and correlation coefficient. These findings suggest that it is possible to estimate macronutrient composition from CGM signals, opening the possibility to develop automatic techniques to track food intake.