论文标题

通过结构化跨模式表示一致性朝着临床辅助的结直肠息肉识别

Toward Clinically Assisted Colorectal Polyp Recognition via Structured Cross-modal Representation Consistency

论文作者

Ma, Weijie, Zhu, Ye, Zhang, Ruimao, Yang, Jie, Hu, Yiwen, Li, Zhen, Xiang, Li

论文摘要

结直肠息肉分类是一项关键的临床检查。为了提高分类精度,大多数计算机辅助诊断算法通过采用窄带成像(NBI)识别结直肠息肉。但是,NBI通常在实际诊所场景中缺少利用,因为该特定图像的获取需要在使用白光(WL)图像检测到息肉时手动切换光模式。为了避免上述情况,我们提出了一种新的方法,可以通过进行结构化的跨模式表示一致性直接实现准确的白光结肠镜图像分类。实际上,一对多模式图像,即NBI和WL,被送入共享变压器中以提取分层特征表示。然后,采用了一种新型设计的空间注意模块(SAM)来计算从多层次的类令牌和贴片令牌%的相似性,以获得特定模态图像。通过将配对NBI和WL图像的类令牌和空间注意图对齐,变压器可以使上述两种方式保持全局和局部表示一致性。广泛的实验结果说明了所提出的方法的表现优于最近的研究,并以单个变压器的形式实现了多模式预测,同时仅在使用WL图像时大大提高了分类精度。

The colorectal polyps classification is a critical clinical examination. To improve the classification accuracy, most computer-aided diagnosis algorithms recognize colorectal polyps by adopting Narrow-Band Imaging (NBI). However, the NBI usually suffers from missing utilization in real clinic scenarios since the acquisition of this specific image requires manual switching of the light mode when polyps have been detected by using White-Light (WL) images. To avoid the above situation, we propose a novel method to directly achieve accurate white-light colonoscopy image classification by conducting structured cross-modal representation consistency. In practice, a pair of multi-modal images, i.e. NBI and WL, are fed into a shared Transformer to extract hierarchical feature representations. Then a novel designed Spatial Attention Module (SAM) is adopted to calculate the similarities between the class token and patch tokens %from multi-levels for a specific modality image. By aligning the class tokens and spatial attention maps of paired NBI and WL images at different levels, the Transformer achieves the ability to keep both global and local representation consistency for the above two modalities. Extensive experimental results illustrate the proposed method outperforms the recent studies with a margin, realizing multi-modal prediction with a single Transformer while greatly improving the classification accuracy when only with WL images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源