论文标题

高维数据流中共同变化的顺序检测

Sequential Detection of Common Change in High-dimensional Data Stream

论文作者

Wu, Yanhong, Wu, Wei Biao

论文摘要

在获得$ arl_0 $的准确近似值之后,我们首先考虑了多元EWMA图表的最佳权重参数设计,该图表可最大程度地减少平均平均延迟检测时间(SADDT)。在获得其$ ARL_0 $和SADDT之后,与移动平均值(MA),CUSUM,CUSUM,广义似然比测试(GLRT)和Shiryayev-Roberts(S-R)图表进行了比较。为了通过稀疏信号检测变化,提出了硬阈值和软阈值EWMA图表。与其他图表(包括自适应技术)的比较表明,应推荐EWMA程序以其稳健的性能和易于设计。

After obtaining an accurate approximation for $ARL_0$, we first consider the optimal design of weight parameter for a multivariate EWMA chart that minimizes the stationary average delay detection time (SADDT). Comparisons with moving average (MA), CUSUM, generalized likelihood ratio test (GLRT), and Shiryayev-Roberts (S-R) charts after obtaining their $ARL_0$ and SADDT's are conducted numerically. To detect the change with sparse signals, hard-threshold and soft-threshold EWMA charts are proposed. Comparisons with other charts including adaptive techniques show that the EWMA procedure should be recommended for its robust performance and easy design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源