论文标题

使用深度学习唤起的数值天气预测,对全球降水的短期预测

Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction

论文作者

Singh, Manmeet, B, Vaisakh S, Acharya, Nachiketa, Grover, Aditya, Rao, Suryachandra A, Kumar, Bipin, Yang, Zong-Liang, Niyogi, Dev

论文摘要

降水控制地球气候,其日常时空波动具有重大的社会经济影响。数值天气预测的进步(NWP)通过改善温度和压力等各种物理领域的预测来衡量。然而,降水预测中存在很大的偏见。我们通过深度学习来扩大著名的NWP模型CFSV2的输出,以创建一个混合模型,该模型在1日,2天和3天的交货时间内改善了短期全局降水量。为了杂交,我们通过使用修改的DLWP-CS体系结构来解决全局数据的球形,从而将所有字段转换为立方体球形投影。动态模型沉淀和表面温度输出被馈入修改的DLWP-CS(UNET),以预测地面真相降水。虽然CFSV2的平均偏差为陆地上的+5至+7毫米/天,但多元深度学习模型将其降低到-1至+1 mm/天。卡特里娜飓风在2005年,伊万(Ivan)飓风,2004年,2010年的中国洪水,2005年的印度洪水和2008年的缅甸风暴纳尔吉斯(Myanmar Storm Nargis)用于确认混合动力学深度学习模型的技能大大提高。 CFSV2通常在空间模式中显示中度至大偏置,并在短距离时间尺度上高估了沉淀。拟议的深度学习增强了NWP模型可以解决这些偏见,并大大改善了预测降水的空间模式和大小。与CFSV2相比,深度学习增强了CFSV2在重要的土地区域的平均偏差为1天的铅1天。时空深度学习系统开辟了途径,以进一步提高全球短期降水预测的精度和准确性。

Precipitation governs Earth's hydroclimate, and its daily spatiotemporal fluctuations have major socioeconomic effects. Advances in Numerical weather prediction (NWP) have been measured by the improvement of forecasts for various physical fields such as temperature and pressure; however, large biases exist in precipitation prediction. We augment the output of the well-known NWP model CFSv2 with deep learning to create a hybrid model that improves short-range global precipitation at 1-, 2-, and 3-day lead times. To hybridise, we address the sphericity of the global data by using modified DLWP-CS architecture which transforms all the fields to cubed-sphere projection. Dynamical model precipitation and surface temperature outputs are fed into a modified DLWP-CS (UNET) to forecast ground truth precipitation. While CFSv2's average bias is +5 to +7 mm/day over land, the multivariate deep learning model decreases it to within -1 to +1 mm/day. Hurricane Katrina in 2005, Hurricane Ivan in 2004, China floods in 2010, India floods in 2005, and Myanmar storm Nargis in 2008 are used to confirm the substantial enhancement in the skill for the hybrid dynamical-deep learning model. CFSv2 typically shows a moderate to large bias in the spatial pattern and overestimates the precipitation at short-range time scales. The proposed deep learning augmented NWP model can address these biases and vastly improve the spatial pattern and magnitude of predicted precipitation. Deep learning enhanced CFSv2 reduces mean bias by 8x over important land regions for 1 day lead compared to CFSv2. The spatio-temporal deep learning system opens pathways to further the precision and accuracy in global short-range precipitation forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源