论文标题
基于模型的干扰估计,用于使用方向感测的纤维增强软操作器
Model-Based Disturbance Estimation for a Fiber-Reinforced Soft Manipulator using Orientation Sensing
论文作者
论文摘要
为了使软机器人在以人为本的环境中有效工作,他们需要能够根据(本体感受)传感器估算其状态和外部相互作用。估计干扰使软机器人可以执行理想的力控制。即使在刚性操纵器的情况下,最终效应器的力估计也被视为一个非平凡的问题。实际上,当前解决这一挑战的其他方法也存在防止其一般应用的缺点。它们通常基于简化的软动力学模型,例如依靠零件恒定曲率(PCC)近似或匹配的刚体模型的模型,这些模型并不代表该问题的细节。因此,无法构建复杂的人类机器人互动所需的应用。有限元方法(FEM)允许以更通用的方式预测软机器人动力学。在这里,使用框架沙发的软机器人建模功能,我们构建了一个详细的FEM模型,该模型由多段软的连续机器人手臂组成,该机器人由合规的可变形材料和纤维增强的压力驱动室组成,并具有用于提供方向输出的传感器的模型。该模型用于建立操纵器的状态观察者。校准模型参数以使用物理实验匹配手动制造过程的缺陷。然后,我们解决了二次编程逆动力学问题,以计算解释姿势误差的外力的组成部分。我们的实验显示,平均力估计误差约为1.2%。由于提出的方法是通用的,因此这些结果令人鼓舞,该任务是构建可以在以人为中心的环境中部署的复杂,反应性,基于传感器的行为的软机器人。
For soft robots to work effectively in human-centered environments, they need to be able to estimate their state and external interactions based on (proprioceptive) sensors. Estimating disturbances allows a soft robot to perform desirable force control. Even in the case of rigid manipulators, force estimation at the end-effector is seen as a non-trivial problem. And indeed, other current approaches to address this challenge have shortcomings that prevent their general application. They are often based on simplified soft dynamic models, such as the ones relying on a piece-wise constant curvature (PCC) approximation or matched rigid-body models that do not represent enough details of the problem. Thus, the applications needed for complex human-robot interaction can not be built. Finite element methods (FEM) allow for predictions of soft robot dynamics in a more generic fashion. Here, using the soft robot modeling capabilities of the framework SOFA, we build a detailed FEM model of a multi-segment soft continuum robotic arm composed of compliant deformable materials and fiber-reinforced pressurized actuation chambers with a model for sensors that provide orientation output. This model is used to establish a state observer for the manipulator. Model parameters were calibrated to match imperfections of the manual fabrication process using physical experiments. We then solve a quadratic programming inverse dynamics problem to compute the components of external force that explain the pose error. Our experiments show an average force estimation error of around 1.2%. As the methods proposed are generic, these results are encouraging for the task of building soft robots exhibiting complex, reactive, sensor-based behavior that can be deployed in human-centered environments.