论文标题

REUSEKNN:基于KNN的差异性建议的社区重用

ReuseKNN: Neighborhood Reuse for Differentially-Private KNN-Based Recommendations

论文作者

Müllner, Peter, Lex, Elisabeth, Schedl, Markus, Kowald, Dominik

论文摘要

在建议过程中,基于用户的KNN推荐系统(USERKNN)利用目标用户最近邻居的评级数据。但是,这增加了邻居的隐私风险,因为他们的评级数据可能会暴露于其他用户或恶意党派。为了降低这种风险,现有工作通过为邻居的评分增加随机性来应用不同的隐私,从而降低了用户的准确性。在这项工作中,我们介绍了一种新型的基于KNN的推荐系统Reuseknn。主要思想是识别小但高度可重复使用的社区,以便(i)只有一组最小的用户需要具有差异隐私的保护,并且(ii)大多数用户不需要受到差异隐私的保护,因为它们仅作为邻居而很少被利用。在我们对五个不同数据集的实验中,我们进行了两个关键的观察:首先,Reuseknn需要较小的社区,因此,与传统的用户相比,更少的邻居需要受到差异隐私的保护。其次,尽管有小社区,但在准确性方面,Reuseknn的表现优于用户和完全不同的私有方法。总体而言,与用户相比,重复使用会导致用户的隐私风险明显少得多。

User-based KNN recommender systems (UserKNN) utilize the rating data of a target user's k nearest neighbors in the recommendation process. This, however, increases the privacy risk of the neighbors since their rating data might be exposed to other users or malicious parties. To reduce this risk, existing work applies differential privacy by adding randomness to the neighbors' ratings, which reduces the accuracy of UserKNN. In this work, we introduce ReuseKNN, a novel differentially-private KNN-based recommender system. The main idea is to identify small but highly reusable neighborhoods so that (i) only a minimal set of users requires protection with differential privacy, and (ii) most users do not need to be protected with differential privacy, since they are only rarely exploited as neighbors. In our experiments on five diverse datasets, we make two key observations: Firstly, ReuseKNN requires significantly smaller neighborhoods, and thus, fewer neighbors need to be protected with differential privacy compared to traditional UserKNN. Secondly, despite the small neighborhoods, ReuseKNN outperforms UserKNN and a fully differentially private approach in terms of accuracy. Overall, ReuseKNN leads to significantly less privacy risk for users than in the case of UserKNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源