论文标题

条件扩散产生的熵驱动的采样和训练方案

Entropy-driven Sampling and Training Scheme for Conditional Diffusion Generation

论文作者

Li, Shengming, Zheng, Guangcong, Wang, Hui, Yao, Taiping, Chen, Yang, Ding, Shoudong, Li, Xi

论文摘要

denoisis扩散概率模型(DDPM)能够通过引入独立的噪声吸引分类器来在每个时间的时间步骤中提供有条件的梯度指导,从而使有条件的图像从先前的噪声到真实数据。但是,由于分类器能够轻松地区分仅具有高级结构的未完全生成的图像的能力,因此梯度是一种类信息指导,倾向于尽早消失,从而导致条件生成过程崩溃到无条件过程。为了解决这个问题,我们从两个角度提出了两种简单但有效的方法。对于抽样程序,我们将预测分布的熵作为指导水平的度量,并提出一种熵感知的缩放方法,以适应性地恢复条件语义指导。对于训练阶段,我们提出了熵意识的优化目标,以减轻噪音数据的过度自信预测。在Imagenet1000 256x256中,我们提出的采样方案和经过训练的分类器,预计的条件和无条件的DDPM模型可以实现10.89%(4.59至4.59至4.09至4.09)和43.5%和43.5%(12至43.5%)。该代码可在https://github.com/zgctroy/ed-dpm上找到。

Denoising Diffusion Probabilistic Model (DDPM) is able to make flexible conditional image generation from prior noise to real data, by introducing an independent noise-aware classifier to provide conditional gradient guidance at each time step of denoising process. However, due to the ability of classifier to easily discriminate an incompletely generated image only with high-level structure, the gradient, which is a kind of class information guidance, tends to vanish early, leading to the collapse from conditional generation process into the unconditional process. To address this problem, we propose two simple but effective approaches from two perspectives. For sampling procedure, we introduce the entropy of predicted distribution as the measure of guidance vanishing level and propose an entropy-aware scaling method to adaptively recover the conditional semantic guidance. For training stage, we propose the entropy-aware optimization objectives to alleviate the overconfident prediction for noisy data.On ImageNet1000 256x256, with our proposed sampling scheme and trained classifier, the pretrained conditional and unconditional DDPM model can achieve 10.89% (4.59 to 4.09) and 43.5% (12 to 6.78) FID improvement respectively. The code is available at https://github.com/ZGCTroy/ED-DPM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源