论文标题

通过高斯参数平滑的输入敏捷认证的团体公平性

Input-agnostic Certified Group Fairness via Gaussian Parameter Smoothing

论文作者

Jin, Jiayin, Zhang, Zeru, Zhou, Yang, Wu, Lingfei

论文摘要

直到最近,研究人员才尝试提供可证明的群体公平保证的分类算法。这些算法中的大多数都遭受了训练和部署数据遵循相同分布的要求造成的骚扰。本文提出了一种输入 - 不合稳定的团体公平算法(Fairsmooth),以改善分类模型的公平性,同时保持出色的预测准确性。开发了一种高斯参数平滑方法,以将基本分类器转换为平滑版本。通过平均所有单个平滑的参数来生成一个最佳的单个平滑分类器,只有有关组的数据,并且所有组的总体平滑分类器都是为了组的最佳单个平滑分类器。通过利用非线性功能分析的理论,将平滑的分类器重新构成NemyTSKII操作员的输出函数。进行理论分析是为了推导Nemytskii操作员平滑,并引起特雷希特的平滑歧管。从理论上讲,我们证明了平滑的歧管具有一个全球Lipschitz常数,该常数独立于输入数据的域,该域是导致输入 - 不合命斯液认证的组公平性的。

Only recently, researchers attempt to provide classification algorithms with provable group fairness guarantees. Most of these algorithms suffer from harassment caused by the requirement that the training and deployment data follow the same distribution. This paper proposes an input-agnostic certified group fairness algorithm, FairSmooth, for improving the fairness of classification models while maintaining the remarkable prediction accuracy. A Gaussian parameter smoothing method is developed to transform base classifiers into their smooth versions. An optimal individual smooth classifier is learnt for each group with only the data regarding the group and an overall smooth classifier for all groups is generated by averaging the parameters of all the individual smooth ones. By leveraging the theory of nonlinear functional analysis, the smooth classifiers are reformulated as output functions of a Nemytskii operator. Theoretical analysis is conducted to derive that the Nemytskii operator is smooth and induces a Frechet differentiable smooth manifold. We theoretically demonstrate that the smooth manifold has a global Lipschitz constant that is independent of the domain of the input data, which derives the input-agnostic certified group fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源