论文标题

修改后的β因子方法的应用用于分析软件常见原因失败

An Application of a Modified Beta Factor Method for the Analysis of Software Common Cause Failures

论文作者

Shorthill, Tate, Bao, Han, Chen, Edward, Ban, Heng

论文摘要

本文提出了一种在数字仪器和控制系统中建模软件常见原因故障(CCF)的方法。 CCF由由于共享故障原因和耦合机制而导致的两个或多个组件之间的并发故障组成。这项工作强调了识别与冗余软件组件同时失败所需的耦合机制相关的以软件为中心的属性的重要性。共享耦合机制的组件组称为共同原因组成组(CCCG)。大多数CCF模型都依靠操作数据作为建立CCCG参数和预测CCF的基础。这项工作是出于两个主要问题的激励:(1)缺乏用于估计软件CCF模型参数的操作和CCF数据; (2)需要同时建模单个组件作为多个CCCG的一部分。开发了一种混合方法来通过利用现有技术来解决这些问题:修改的β因子模型允许将单个组件放置在多个CCCG中,而第二种技术为每个CCCG提供了特定于软件的模型参数。这种混合方法提供了一种克服常规方法局限性的方法,同时在有限的数据方案下为设计决策提供支持。

This paper presents an approach for modeling software common cause failures (CCFs) within digital instrumentation and control (I&C) systems. CCFs consist of a concurrent failure between two or more components due to a shared failure cause and coupling mechanism. This work emphasizes the importance of identifying software-centric attributes related to the coupling mechanisms necessary for simultaneous failures of redundant software components. The groups of components that share coupling mechanisms are called common cause component groups (CCCGs). Most CCF models rely on operational data as the basis for establishing CCCG parameters and predicting CCFs. This work is motivated by two primary concerns: (1) a lack of operational and CCF data for estimating software CCF model parameters; and (2) the need to model single components as part of multiple CCCGs simultaneously. A hybrid approach was developed to account for these concerns by leveraging existing techniques: a modified beta factor model allows single components to be placed within multiple CCCGs, while a second technique provides software-specific model parameters for each CCCG. This hybrid approach provides a means to overcome the limitations of conventional methods while offering support for design decisions under the limited data scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源