论文标题

关于Apery常数方法的注释

Notes On An Approach To Apery's Constant

论文作者

Fairbanks, Leon D.

论文摘要

莱昂哈德·欧拉(Leonhard Euler)在1734年解决的巴塞尔问题要求解决自然数字正方形的倒数的总和,即无限序列的总和:\ begin {equation} \sum_{i=1}^{\infty}\frac{1}{n^2}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\ldots\notag \end{equation} The same question is posed regarding the summation of the自然数量的立方体的倒数,$ζ(3)$。结果常数被称为apery的常数。 YouTube频道3BlueBrown制作了一个标题为“为什么在这里Pi?为什么它是平方的视频?对巴塞尔问题的几何答案”。该视频展示了约翰·瓦斯兰德的作品。方程可以扩展到$ζ(n)$,但是几何参数丢失了。我们尝试以$ζ(n)$来探索这些方程式。

The Basel problem, solved by Leonhard Euler in 1734, asks to resolve $ζ(2)$, the sum of the reciprocals of the squares of the natural numbers, i.e. the sum of the infinite series: \begin{equation} \sum_{i=1}^{\infty}\frac{1}{n^2}=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\ldots\notag \end{equation} The same question is posed regarding the summation of the reciprocals of the cubes of the natural numbers, $ζ(3)$. The resulting constant is known as Apery's constant. A YouTube channel, 3BlueBrown, produced a video entitled, "Why is pi here? And why is it squared? A geometric answer to the Basel problem". The video presents the work of John Wästlund. The equations can be extended to $ζ(n)$, but the geometric argument is lost. We try to explore these equations for $ζ(n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源