论文标题

软呢帽:系统异质性下的联邦建筑搜索

FedorAS: Federated Architecture Search under system heterogeneity

论文作者

Dudziak, Lukasz, Laskaridis, Stefanos, Fernandez-Marques, Javier

论文摘要

联邦学习(FL)最近由于能够在保留客户隐私的同时学习分散数据的能力而受到了极大的关注。但是,这也提出了与参与设备的异质性有关的其他挑战,无论是在其计算能力和贡献数据方面。同时,神经体系结构搜索(NAS)已成功地与集中式数据集一起使用,从而产生了最先进的结果,从而导致了受限或不受约束的设置。但是,这种集中式数据集可能总是可用于培训。 NAS和FL交集的最新工作试图在联合设置中减轻此问题,该设置假设使用数据中心级硬件假设均匀的计算环境。在本文中,我们探讨了一个问题,即我们是否可以在联合设置的跨设备设置中设计不同脚印的架构,在该设置中,设备的景观,可用性和规模非常不同。为此,我们设计了系统,软呢帽,在处理具有非IID分布式数据的各种功能的设备时,以资源感知的方式发现和培训有希望的体系结构。我们提供了其在不同环境中的有效性的经验证据,涵盖了三种不同的方式(视觉,语音,文本),并与最新的联合解决方案相比,在保持资源效率的同时,展示了其更好的性能。

Federated learning (FL) has recently gained considerable attention due to its ability to learn on decentralised data while preserving client privacy. However, it also poses additional challenges related to the heterogeneity of the participating devices, both in terms of their computational capabilities and contributed data. Meanwhile, Neural Architecture Search (NAS) has been successfully used with centralised datasets, producing state-of-the-art results in constrained or unconstrained settings. However, such centralised datasets may not be always available for training. Most recent work at the intersection of NAS and FL attempts to alleviate this issue in a cross-silo federated setting, which assumes homogeneous compute environments with datacenter-grade hardware. In this paper we explore the question of whether we can design architectures of different footprints in a cross-device federated setting, where the device landscape, availability and scale are very different. To this end, we design our system, FedorAS, to discover and train promising architectures in a resource-aware manner when dealing with devices of varying capabilities holding non-IID distributed data. We present empirical evidence of its effectiveness across different settings, spanning across three different modalities (vision, speech, text), and showcase its better performance compared to state-of-the-art federated solutions, while maintaining resource efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源