论文标题

一般单变量分布算法

General Univariate Estimation-of-Distribution Algorithms

论文作者

Doerr, Benjamin, Dufay, Marc

论文摘要

我们提出了单变量分布算法(EDA)的一般表述。它自然结合了三个经典的单变量EDA \ EMPH {紧凑型遗传算法},\ emph {Univariate边缘分布算法}和\ emph {基于群体的增量学习}以及\ emph {max-min ant System},并带有itseration-pest-pest-pest-pest-pest-test-pest-pest-test-pest-test-pest-test-pest-test-pest-test-pest-test-test-pest-pest-test-pest-test-pest-test-pest-test-pest-test-pest-pest-tept。我们对现有算法的统一描述允许对这些算法进行统一分析;我们通过提供对遗传漂移的分析来证明这一点,该分析立即为上述四种算法提供了现有结果。我们的一般模型还包括比现有模型更有效的EDA,并且在我们为OneMax和Leadings基准测试时可能并不难找到。

We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs \emph{compact genetic algorithm}, \emph{univariate marginal distribution algorithm} and \emph{population-based incremental learning} as well as the \emph{max-min ant system} with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源