论文标题
在连续空间中使用离线强化学习学习败血症的最佳治疗策略
Learning Optimal Treatment Strategies for Sepsis Using Offline Reinforcement Learning in Continuous Space
论文作者
论文摘要
败血症是ICU死亡的主要原因。这是一种需要在短时间内进行复杂干预措施的疾病,但其最佳治疗策略仍然不确定。证据表明,当前使用的治疗策略的实践是有问题的,可能对患者造成伤害。为了解决这个决策问题,我们提出了一个基于历史数据的新医疗决策模型,以帮助临床医生建议实时治疗的最佳参考选项。我们的模型结合了离线强化学习和深入的强化学习,以解决医疗领域中传统强化学习的问题,因为无法与环境互动,同时使我们的模型能够在连续的国家行动空间中做出决策。我们证明,平均而言,模型推荐的治疗方法比临床医生建议的治疗更有价值和可靠。在大型验证数据集中,我们发现临床医生实际剂量与人工智能做出的决定的患者的死亡率最低。我们的模型为败血症提供了个性化和临床解释的治疗决策,以改善患者护理。
Sepsis is a leading cause of death in the ICU. It is a disease requiring complex interventions in a short period of time, but its optimal treatment strategy remains uncertain. Evidence suggests that the practices of currently used treatment strategies are problematic and may cause harm to patients. To address this decision problem, we propose a new medical decision model based on historical data to help clinicians recommend the best reference option for real-time treatment. Our model combines offline reinforcement learning and deep reinforcement learning to solve the problem of traditional reinforcement learning in the medical field due to the inability to interact with the environment, while enabling our model to make decisions in a continuous state-action space. We demonstrate that, on average, the treatments recommended by the model are more valuable and reliable than those recommended by clinicians. In a large validation dataset, we find out that the patients whose actual doses from clinicians matched the decisions made by AI has the lowest mortality rates. Our model provides personalized and clinically interpretable treatment decisions for sepsis to improve patient care.