论文标题
算法计算$ \ mathbb {p}^3(\ mathbb {f} _q)$中的盖帽数
An algorithm to count the number of caps in $\mathbb{P}^3(\mathbb{F}_q)$
论文作者
论文摘要
$ k $二维投影空间的$ n $ cap是一组$ n $点,因此没有三个在线上。在本说明中,我们提供了一种算法来计算$ \ mathbb {p}^3(\ mathbb {f} _q)$中的$ n $ caps数,这是我们最近的论文[9]。然后,当$ n \ le 7 $时,我们为$ n $ caps的数量提供了精确的公式。当$ n \ le 6 $和$ q $ $ q $时,$ n = 7 $时,公式为$ q $ $ q $。
An $n$-cap in $k$-dimensional projective space is a set of $n$ points so that no three lie on a line. In this note, we provide an algorithm to count the number of $n$-caps in $\mathbb{P}^3(\mathbb{F}_q)$, which follows from our recent paper [9]. We then give exact formulas for the number of $n$-caps when $n \le 7$. The formulas are polynomial in $q$ when $n \le 6$ and quasipolynomial in $q$ when $n = 7$.